HyperAI

Image Classification On Inaturalist

Métriques

Top 1 Accuracy

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleTop 1 Accuracy
metasaug-meta-semantic-augmentation-for-long63.28%
multimodal-autoregressive-pre-training-of79.7
spinenet-learning-scale-permuted-backbone-for63.6%
deep-cnns-meet-global-covariance-pooling-
masked-autoencoders-are-scalable-vision83.4
deit-lt-distillation-strikes-back-for-vision-
multimodal-autoregressive-pre-training-of77.9
hiera-a-hierarchical-vision-transformer83.8
fixing-the-train-test-resolution-discrepancy75.4
the-inaturalist-species-classification-and67.3%
metaformer-a-unified-meta-framework-for-fine83.4%
metaformer-a-unified-meta-framework-for-fine80.4%
transfg-a-transformer-architecture-for-fine71.7
graph-rise-graph-regularized-image-semantic31.12%
on-the-eigenvalues-of-global-covariance72.3
multimodal-autoregressive-pre-training-of81.5
multimodal-autoregressive-pre-training-of76
multimodal-autoregressive-pre-training-of85.9