HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Denoisage d'image en niveaux de gris
Grayscale Image Denoising On Bsd68 Sigma15
Grayscale Image Denoising On Bsd68 Sigma15
Métriques
PSNR
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
PSNR
Paper Title
Repository
GCDN
31.83
Deep Graph-Convolutional Image Denoising
-
RIDNet
31.81
Real Image Denoising with Feature Attention
-
KBNet
31.98
KBNet: Kernel Basis Network for Image Restoration
-
Deep CNN Denoiser
31.63
Learning Deep CNN Denoiser Prior for Image Restoration
-
BUIFD75 (blind)
31.35
Blind Universal Bayesian Image Denoising with Gaussian Noise Level Learning
-
FFDNet
31.63
FFDNet: Toward a Fast and Flexible Solution for CNN based Image Denoising
-
SwinIR
31.97
SwinIR: Image Restoration Using Swin Transformer
-
NLRN
31.88
Non-Local Recurrent Network for Image Restoration
-
TNRD
31.42
Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration
-
ADL
32.11
Adversarial Distortion Learning for Medical Image Denoising
-
Big-CDLNet
31.74
CDLNet: Robust and Interpretable Denoising Through Deep Convolutional Dictionary Learning
-
GroupCDL
31.82
Fast and Interpretable Nonlocal Neural Networks for Image Denoising via Group-Sparse Convolutional Dictionary Learning
-
SwinIA
31.07
SwinIA: Self-Supervised Blind-Spot Image Denoising without Convolutions
-
MWCNN
31.86
Multi-level Wavelet-CNN for Image Restoration
-
Index Network
31.23
Index Network
-
Restormer
31.96
Restormer: Efficient Transformer for High-Resolution Image Restoration
-
0 of 16 row(s) selected.
Previous
Next
Grayscale Image Denoising On Bsd68 Sigma15 | SOTA | HyperAI