HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Fraud Detection
Fraud Detection On Baf Base
Fraud Detection On Baf Base
Métriques
Recall @ 1% FPR
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Recall @ 1% FPR
Paper Title
Repository
FIGS
21%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
-
CART
16%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
-
LightGBM
-
Exploring Neural Joint Activity in Spiking Neural Networks for Fraud Detection
FIGU+RIFF
15.5%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
-
1D-CSNN
-
Exploring Neural Joint Activity in Spiking Neural Networks for Fraud Detection
CART+RIFF
18.4%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
-
MLP–NN
-
Decoupling Decision-Making in Fraud Prevention through Classifier Calibration for Business Logic Action
-
FIGS+RIFF
15.8%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
-
CatBoost
-
Decoupling Decision-Making in Fraud Prevention through Classifier Calibration for Business Logic Action
-
1D-CSNN
-
Improving Fraud Detection with 1D-Convolutional Spiking Neural Networks Through Bayesian Optimization
LightGBM
-
Decoupling Decision-Making in Fraud Prevention through Classifier Calibration for Business Logic Action
-
LightGBM
25.2%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
-
0 of 12 row(s) selected.
Previous
Next