HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Énergie de formation
Formation Energy On Materials Project
Formation Energy On Materials Project
Métriques
MAE
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
MAE
Paper Title
Repository
Matformer
21.2
Periodic Graph Transformers for Crystal Material Property Prediction
-
SchNet
35
SchNet - a deep learning architecture for molecules and materials
-
PotNet
18.8
Efficient Approximations of Complete Interatomic Potentials for Crystal Property Prediction
-
MEGNet
28
Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals
-
SchNet
31.8
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
-
CGCNN
39
Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties
-
CartNet
17.47
A Cartesian Encoding Graph Neural Network for Crystal Structures Property Prediction: Application to Thermal Ellipsoid Estimation
-
MT-CGCNN
41
MT-CGCNN: Integrating Crystal Graph Convolutional Neural Network with Multitask Learning for Material Property Prediction
-
SchNet-edge-update
22.7
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
-
0 of 9 row(s) selected.
Previous
Next
Formation Energy On Materials Project | SOTA | HyperAI