HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Few Shot Image Segmentation
Few Shot Semantic Segmentation On Pascal 5I 1
Few Shot Semantic Segmentation On Pascal 5I 1
Métriques
Mean IoU
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Mean IoU
Paper Title
Repository
RePRI (CECE-T,ResNet-50)
60.5
Clustered-patch Element Connection for Few-shot Learning
-
DGPNet (ResNet-101)
64.8
Dense Gaussian Processes for Few-Shot Segmentation
DCAMA (Swin-B)
69.3
Dense Cross-Query-and-Support Attention Weighted Mask Aggregation for Few-Shot Segmentation
GF-SAM
72.1
Bridge the Points: Graph-based Few-shot Segment Anything Semantically
IPRNet (ResNet-50)
65.7
Interclass Prototype Relation for Few-Shot Segmentation
-
PGNet (ResNet-50)
56.0
Pyramid Graph Networks With Connection Attentions for Region-Based One-Shot Semantic Segmentation
-
IMR-HSNet (ResNet-50)
61.1
Iterative Few-shot Semantic Segmentation from Image Label Text
ASGNet (ResNet-101)
59.31
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation
VAT (HM, ResNet-50)
65.8
HM: Hybrid Masking for Few-Shot Segmentation
-
APANet (ResNet-101)
64
APANet: Adaptive Prototypes Alignment Network for Few-Shot Semantic Segmentation
-
DACM (ResNet-101)
67.5
Doubly Deformable Aggregation of Covariance Matrices for Few-shot Segmentation
HDMNet (VGG-16)
65.1
Hierarchical Dense Correlation Distillation for Few-Shot Segmentation
DACM (ResNet-50)
65.7
Doubly Deformable Aggregation of Covariance Matrices for Few-shot Segmentation
FECANet (VGG-16)
64.3
FECANet: Boosting Few-Shot Semantic Segmentation with Feature-Enhanced Context-Aware Network
HMNet (VGG-16)
67.3
Hybrid Mamba for Few-Shot Segmentation
PGMA-Net (ResNet-50)
74.1
Visual and Textual Prior Guided Mask Assemble for Few-Shot Segmentation and Beyond
-
RePRI (ResNet-50)
59.7
Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need?
SegGPT (ViT)
83.2
SegGPT: Segmenting Everything In Context
MIANet (ResNet-50)
68.72
MIANet: Aggregating Unbiased Instance and General Information for Few-Shot Semantic Segmentation
-
MSDNet (ResNet-101)
64.7
MSDNet: Multi-Scale Decoder for Few-Shot Semantic Segmentation via Transformer-Guided Prototyping
0 of 105 row(s) selected.
Previous
Next