HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Few Shot Image Segmentation
Few Shot Semantic Segmentation On Fss 1000 5
Few Shot Semantic Segmentation On Fss 1000 5
Métriques
Mean IoU
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Mean IoU
Paper Title
Repository
HSNet (HM, ResNet-101)
88.5
HM: Hybrid Masking for Few-Shot Segmentation
-
HSNet (HM, ResNet-50)
88
HM: Hybrid Masking for Few-Shot Segmentation
-
HSNet (ResNet-50)
87.8
Hypercorrelation Squeeze for Few-Shot Segmentation
SegGPT (ViT)
89.3
SegGPT: Segmenting Everything In Context
VAT (ResNet-50)
90.7
Cost Aggregation with 4D Convolutional Swin Transformer for Few-Shot Segmentation
VAT (HM, ResNet-50)
89.9
HM: Hybrid Masking for Few-Shot Segmentation
-
EfficientLab + PRN
-
PatchRefineNet: Improving Binary Segmentation by Incorporating Signals from Optimal Patch-wise Binarization
Annotation-free FSS (Without Annotation,ResNet-50)
86.8
Self-supervised Few-shot Learning for Semantic Segmentation: An Annotation-free Approach
HSNet (VGG-16)
85.8
Hypercorrelation Squeeze for Few-Shot Segmentation
DACM (ResNet-50)
91.6
Doubly Deformable Aggregation of Covariance Matrices for Few-shot Segmentation
DCAMA (Swin-B)
90.4
Dense Cross-Query-and-Support Attention Weighted Mask Aggregation for Few-Shot Segmentation
DACM (ResNet-101)
91.7
Doubly Deformable Aggregation of Covariance Matrices for Few-shot Segmentation
VAT (HM, ResNet-101)
90.5
HM: Hybrid Masking for Few-Shot Segmentation
-
FSS-1000 (VGG-16)
80.12
FSS-1000: A 1000-Class Dataset for Few-Shot Segmentation
GF-SAM
88.9
Bridge the Points: Graph-based Few-shot Segment Anything Semantically
VAT
90.6
Cost Aggregation Is All You Need for Few-Shot Segmentation
HSNet (ResNet-101)
88.5
Hypercorrelation Squeeze for Few-Shot Segmentation
SSP
88.6
Self-Support Few-Shot Semantic Segmentation
VAT (ResNet-101)
90.8
Cost Aggregation with 4D Convolutional Swin Transformer for Few-Shot Segmentation
DCAMA (ResNet-50)
88.8
Dense Cross-Query-and-Support Attention Weighted Mask Aggregation for Few-Shot Segmentation
0 of 22 row(s) selected.
Previous
Next