HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Identification faciale
Face Identification On Megaface
Face Identification On Megaface
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
GhostFaceNetV2-1
98.64%
GhostFaceNets: Lightweight Face Recognition Model From Cheap Operations
CosFace
82.72%
CosFace: Large Margin Cosine Loss for Deep Face Recognition
-
Cos+UNPG
99.27%
Unified Negative Pair Generation toward Well-discriminative Feature Space for Face Recognition
-
PartialFC + Glint360K + R100
99.10%
Partial FC: Training 10 Million Identities on a Single Machine
-
SphereFace (3-patch ensemble)
75.766%
SphereFace: Deep Hypersphere Embedding for Face Recognition
-
Mag+UNPG
98.03%
Unified Negative Pair Generation toward Well-discriminative Feature Space for Face Recognition
-
ArcFace + MS1MV2 + R100 + R
98.35%
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
-
Prodpoly
98.78%
Deep Polynomial Neural Networks
-
FaceNet
70.49%
FaceNet: A Unified Embedding for Face Recognition and Clustering
-
Light CNN-29
73.749%
A Light CNN for Deep Face Representation with Noisy Labels
-
SV-AM-Softmax
97.2%
Support Vector Guided Softmax Loss for Face Recognition
-
SphereFace (single model)
72.729%
SphereFace: Deep Hypersphere Embedding for Face Recognition
-
Arc+UNPG
98.82%
Unified Negative Pair Generation toward Well-discriminative Feature Space for Face Recognition
-
0 of 13 row(s) selected.
Previous
Next
Face Identification On Megaface | SOTA | HyperAI