HyperAI

Face Alignment On Cofw

Métriques

NME (inter-ocular)

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleNME (inter-ocular)
1908079193.45
sparse-local-patch-transformer-for-robust3.32
wing-loss-for-robust-facial-landmark5.07
pixel-in-pixel-net-towards-efficient-facial3.08%
stacked-dense-u-nets-with-dual-transformers-
towards-accurate-facial-landmark-detection-13.02%
facial-landmark-points-detection-using4.11%
cascade-of-encoder-decoder-cnns-with-learned-
look-at-boundary-a-boundary-aware-face3.92%
look-at-boundary-a-boundary-aware-face5.58%
pre-training-strategies-and-datasets-for3.32
atf-towards-robust-face-alignment-via3.32%
multi-task-head-pose-estimation-in-the-wild-1-
propagationnet-propagate-points-to-curve-to-13.71%
star-loss-reducing-semantic-ambiguity-in-13.21%
when-liebig-s-barrel-meets-facial-landmark3.1%
fiducial-focus-augmentation-for-facial2.96
acr-loss-adaptive-coordinate-based-regression3.47%
fast-and-accurate-structure-coherence3.63%
a-deeply-initialized-coarse-to-fine-ensemble-
high-resolution-representations-for-labeling3.45%
revisiting-quantization-error-in-face3.28%
face-alignment-using-a-3d-deeply-initialized-
facial-landmark-points-detection-using3.81%
subpixel-heatmap-regression-for-facial3.02%
multi-task-head-pose-estimation-in-the-wild-1-
disentangling-3d-pose-in-a-dendritic-cnn-for5.77%
hih-towards-more-accurate-face-alignment-via3.21%