HyperAIHyperAI

Command Palette

Search for a command to run...

Document Layout Analysis On Publaynet Val

Métriques

Figure
List
Overall
Table
Text
Title

Résultats

Résultats de performance de divers modèles sur ce benchmark

Paper Title
DETR0.9750.9640.9570.9810.9470.918Bridging the Performance Gap between DETR and R-CNN for Graphical Object Detection in Document Images
VGT0.9710.9680.9620.9810.9500.939Vision Grid Transformer for Document Layout Analysis
LayoutLMv3-B0.9700.9550.9510.9790.9450.906LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking
CDeC-Net---0.978--CDeC-Net: Composite Deformable Cascade Network for Table Detection in Document Images
DiT-L0.9720.9600.9490.9780.9440.893DiT: Self-supervised Pre-training for Document Image Transformer
DoPTA-HR0.9700.9570.9490.9770.9440.895DoPTA: Improving Document Layout Analysis using Patch-Text Alignment
ResNext-101-32×8d0.9680.9400.9350.9760.9300.862Vision Grid Transformer for Document Layout Analysis
TRDLU0.9660.9750.9590.9760.9580.921Transformer-based Approach for Document Understanding
VSR0.9640.9470.9570.9740.9670.931VSR: A Unified Framework for Document Layout Analysis combining Vision, Semantics and Relations
UDoc0.9640.9370.9390.9730.9390.885Unified Pretraining Framework for Document Understanding
BEiT-B 0.9570.9240.9310.9730.9340.866BEiT: BERT Pre-Training of Image Transformers
DeiT-B0.957 0.9210.9320.9720.9340.874Training data-efficient image transformers & distillation through attention
Mask RCNN0.9490.8860.9100.9600.9160.840PubLayNet: largest dataset ever for document layout analysis
Faster RCNN0.9370.8830.9020.9540.9100.826PubLayNet: largest dataset ever for document layout analysis
GLAM0.2060.8620.7220.8680.8780.800A Graphical Approach to Document Layout Analysis
0 of 15 row(s) selected.
Document Layout Analysis On Publaynet Val | SOTA | HyperAI