HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Distance Regression
Distance Regression On Chili 3K
Distance Regression On Chili 3K
Métriques
MSE
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
MSE
Paper Title
Repository
GCN
0.056 +/- 0.006
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
GAT
0.342 +/- 0.117
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
PMLP
0.359 +/- 0.017
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
GraphUNet
0.055 +/- 0.001
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
GraphSAGE
0.055 +/- 0.002
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
EdgeCNN
0.015 +/- 0.001
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
Mean
0.265
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
GIN
0.464 +/- 0.005
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
0 of 8 row(s) selected.
Previous
Next