HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Distance Regression
Distance Regression On Chili 100K
Distance Regression On Chili 100K
Métriques
MSE
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
MSE
Paper Title
Repository
GAT
0.252 +/- 0.003
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
Mean
0.307
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
GCN
0.090 +/- 0.002
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
EdgeCNN
0.030 +/- 0.001
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
PMLP
0.486 +/- 0.014
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
GraphUNet
0.085 +/- 0.002
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
GIN
0.491 +/- 0.038
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
GraphSAGE
0.064 +/- 0.001
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
0 of 8 row(s) selected.
Previous
Next