HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Defect Detection
Defect Detection On Codexglue Devign
Defect Detection On Codexglue Devign
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
PLBART + GFSA
62.96
Graph Convolutions Enrich the Self-Attention in Transformers!
CodeT5-small + GFSA
63.69
Graph Convolutions Enrich the Self-Attention in Transformers!
CodeT5-small
63.25
Graph Convolutions Enrich the Self-Attention in Transformers!
RoBERTa + GFSA
64.39
Graph Convolutions Enrich the Self-Attention in Transformers!
PLBART
62.63
Graph Convolutions Enrich the Self-Attention in Transformers!
CodeT5
65.78
CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation
CodeT5-base
63.51
Graph Convolutions Enrich the Self-Attention in Transformers!
CodeBERT + GFSA
64.49
Graph Convolutions Enrich the Self-Attention in Transformers!
RoBERTa
62.88
Graph Convolutions Enrich the Self-Attention in Transformers!
CodeBERT
64.31
Graph Convolutions Enrich the Self-Attention in Transformers!
CodeBERT
62.08
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation
CodeT5-base + GFSA
64.75
Graph Convolutions Enrich the Self-Attention in Transformers!
0 of 12 row(s) selected.
Previous
Next