HyperAI

Deblurring On Realblur R Trained On Gopro

Métriques

PSNR (sRGB)
SSIM (sRGB)

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèlePSNR (sRGB)SSIM (sRGB)
revisiting-image-deblurring-with-an-efficient36.080.955
blind-image-deblurring-using-dark-channel34.010.916
unnatural-l0-sparse-representation-for-0.937
multi-stage-progressive-image-restoration35.990.952
scale-recurrent-network-for-deep-image-0.947
aggregating-local-and-global-features-via36.350.961
adarevd-adaptive-patch-exiting-reversible-136.530.957
deep-stacked-hierarchical-multi-patch-network-0.948
restormer-efficient-transformer-for-high36.190.957
deblurdinat-a-lightweight-and-effective36.090.955
dynamic-scene-deblurring-using-spatially-0.947
deep-multi-scale-convolutional-neural-network-0.841
deblurgan-v2-deblurring-orders-of-magnitude-0.944
uformer-a-general-u-shaped-transformer-for36.220.957
deblurgan-blind-motion-deblurring-using-0.903
deblurring-low-light-images-with-light33.670.916
maxim-multi-axis-mlp-for-image-processing35.78-
deep-residual-fourier-transformation-for36.110.955
mssnet-multi-scale-stage-network-for-single35.930.953