HyperAI

Cross Modal Retrieval With Noisy 3

Métriques

Image-to-text R@1
Image-to-text R@10
Image-to-text R@5
R-Sum
Text-to-image R@1
Text-to-image R@10
Text-to-image R@5

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleImage-to-text R@1Image-to-text R@10Image-to-text R@5R-SumText-to-image R@1Text-to-image R@10Text-to-image R@5
nac-mitigating-noisy-correspondence-in-cross80.398.596.2524.563.296.090.3
learning-with-noisy-correspondence78.298.595.8519.962.695.489.4
repair-rank-correlation-and-noisy-pair-half78.398.396.8521.262.595.589.8
bicro-noisy-correspondence-rectification-for78.898.696.1523.263.795.790.3
noisy-correspondence-learning-with-self78.598.896.8524.163.895.890.4
cross-modal-active-complementary-learning-179.698.796.1525.664.795.990.6
recon-enhancing-true-correspondence-180.998.896.6528.665.296.091.0
learning-to-rematch-mismatched-pairs-for80.298.596.3524.764.295.490.1
ugncl-uncertainty-guided-noisy-correspondence79.599.097.2526.363.796.090.9
learning-from-noisy-correspondence-with-tri79.898.996.652763.896.791.2
deep-evidential-learning-with-noisy77.598.495.9518.261.795.489.3
noisy-correspondence-learning-with-meta78.198.897.2524.664.395.890.4
integrating-language-guidance-into-image-text79.698.596.5524.964.495.990.0
cross-modal-retrieval-with-noisy78.998.696.352363.395.890.1
cross-modal-retrieval-with-partially77.098.195.5515.561.394.888.8
mitigating-noisy-correspondence-by79.598.996.4525.764.495.990.6
learning-with-noisy-correspondence-for-cross77.798.295.5518.562.595.389.3