Conversation Disentanglement On Irc
Métriques
1-1
F
P
R
VI
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | 1-1 | F | P | R | VI | Paper Title | Repository |
---|---|---|---|---|---|---|---|
FF ensemble: Intersect | 26.6 | 32.1 | 67.0 | 21.1 | 69.3 | A Large-Scale Corpus for Conversation Disentanglement | |
Linear | 51.4 | 15.5 | 12.1 | 21.5 | 82.1 | You Talking to Me? A Corpus and Algorithm for Conversation Disentanglement | - |
Feedforward | 75.6 | 36.2 | 34.6 | 38.0 | 91.3 | A Large-Scale Corpus for Conversation Disentanglement | |
BERT + BiLSTM | - | 46.8 | 44.3 | 49.6 | 93.3 | Pre-Trained and Attention-Based Neural Networks for Building Noetic Task-Oriented Dialogue Systems | - |
FF ensemble: Vote | 76.0 | 38.0 | 36.3 | 39.7 | 91.5 | A Large-Scale Corpus for Conversation Disentanglement |
0 of 5 row(s) selected.