HyperAIHyperAI

Complex Query Answering On Nell 995

Métriques

MRR 1p
MRR 2i
MRR 2p
MRR 2u
MRR 3i
MRR 3p
MRR ip
MRR pi
MRR up

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
MRR 1p
MRR 2i
MRR 2p
MRR 2u
MRR 3i
MRR 3p
MRR ip
MRR pi
MRR up
Paper TitleRepository
CQDA0.6040.4340.2290.2000.5260.1670.2640.3210.170Adapting Neural Link Predictors for Data-Efficient Complex Query Answering-
QTO0.6070.4250.2410.2040.5060.2160.2650.3130.179Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization-
CQD0.6040.436----0.256--Complex Query Answering with Neural Link Predictors-
Q2B0.4220.3330.1400.1130.4450.1120.1680.2240.1103Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings-
GNN-QE0.5330.4240.1890.1590.5250.1490.1890.3080.126Neural-Symbolic Models for Logical Queries on Knowledge Graphs-
BetaE0.530.3760.130.1220.4750.1140.1430.2410.085Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs-
0 of 6 row(s) selected.