HyperAI

Complex Query Answering On Fb15K

Métriques

MRR 1p
MRR 2i
MRR 2p
MRR 2u
MRR 3i
MRR 3p
MRR ip
MRR pi
MRR up

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleMRR 1pMRR 2iMRR 2pMRR 2uMRR 3iMRR 3pMRR ipMRR piMRR up
answering-complex-logical-queries-on0.8950.8030.6740.7670.8360.5880.7400.7520.613
complex-query-answering-with-neural-link-1---------
neural-symbolic-models-for-logical-queries-on0.8850.7970.6930.7410.8350.5870.7040.6990.610
adapting-neural-link-predictors-for-complex0.8920.7610.6450.6840.7940.5790.7060.7010.579
embedding-logical-queries-on-knowledge-graphs0.5460.3970.1530.2210.5140.1080.1910.2760.116
query2box-reasoning-over-knowledge-graphs-in-10.680.5510.210.3510.6650.1420.2610.3940.167
complex-query-answering-with-neural-link-10.8920.7710.6530.7230.806-0.716--
complex-query-answering-with-neural-link-1---------
beta-embeddings-for-multi-hop-logical0.6510.5580.2570.4010.6650.2470.2810.4390.252