HyperAI
HyperAI
Accueil
Actualités
Articles de recherche
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Rechercher sur le site...
⌘
K
Accueil
SOTA
Génération de code
Code Generation On Django
Code Generation On Django
Métriques
Accuracy
BLEU Score
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
BLEU Score
Paper Title
Repository
LUKEMarian
78.50
89.34
Leveraging pre-trained language models for code generation
-
Reranker
80.2
-
Reranking for Neural Semantic Parsing
-
MarianCG
81.83
90.41
MarianCG: a code generation transformer model inspired by machine translation
-
lpn (Ling et al., 2016)
62.3
77.6
Latent Predictor Networks for Code Generation
RoBERTaMarian
77.95
88.91
Leveraging pre-trained language models for code generation
-
Tranx
73.7
-
TRANX: A Transition-based Neural Abstract Syntax Parser for Semantic Parsing and Code Generation
BERTMarian
76.68
56.55
Leveraging pre-trained language models for code generation
-
BERT + TAE
81.03
-
Code Generation from Natural Language with Less Prior and More Monolingual Data
TranX + BERT w/mined
81.03
79.86
The impact of lexical and grammatical processing on generating code from natural language
Phrasal Statistical MT (Ling et al., 2016)
31.5
47.6
Latent Predictor Networks for Code Generation
ELECTRAMarian
65.32
53.02
Leveraging pre-trained language models for code generation
-
0 of 11 row(s) selected.
Previous
Next