HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
Système
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Connexion
Connexion
Accueil
SOTA
Click Through Rate Prediction
Click Through Rate Prediction On Kkbox
Click Through Rate Prediction On Kkbox
Métriques
AUC
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
AUC
Paper Title
Repository
AutoInt+
0.8534
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
xDeepFM
0.8535
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
DCNv3
0.8557
DCNv3: Towards Next Generation Deep Cross Network for CTR Prediction
-
DeepFM
0.8531
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
DeepIM
0.8537
Deep Interaction Machine: A Simple but Effective Model for High-order Feature Interactions
DCNv2
0.8531
DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems
0 of 6 row(s) selected.
Previous
Next