HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Prédiction du taux de clic
Click Through Rate Prediction On Criteo
Click Through Rate Prediction On Criteo
Métriques
AUC
Log Loss
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
AUC
Log Loss
Paper Title
Repository
IPNN
0.7972
0.45323
Product-based Neural Networks for User Response Prediction
-
OptFS
0.8116
0.4401
Optimizing Feature Set for Click-Through Rate Prediction
-
DCN V2
0.8115
0.4406
DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems
-
FiBiNet++
0.8110
-
FiBiNet++: Reducing Model Size by Low Rank Feature Interaction Layer for CTR Prediction
-
GDCN
0.8161
0.4360
Towards Deeper, Lighter and Interpretable Cross Network for CTR Prediction
-
xDeepFM
0.8052
0.4418
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
-
TFNet
0.7991
-
TFNet: Multi-Semantic Feature Interaction for CTR Prediction
-
CETN
0.8148
0.4373
CETN: Contrast-enhanced Through Network for CTR Prediction
-
FNN
0.7963
0.45738
Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction
-
FiBiNET
0.8103
0.4423
-
-
MemoNet
0.8152
-
MemoNet: Memorizing All Cross Features' Representations Efficiently via Multi-Hash Codebook Network for CTR Prediction
-
AutoDeepFM(3rd)
0.8010
0.5405
AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction
-
Wide&Deep
0.7981
0.46772
Wide & Deep Learning for Recommender Systems
-
Fi-GNN
0.8062
0.4453
Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction
-
DeepFM
0.8007
0.45083
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
-
DeepLight
0.8123
0.4395
DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving
-
OptInter
0.8101
0.4417
Memorize, Factorize, or be Naïve: Learning Optimal Feature Interaction Methods for CTR Prediction
-
XCrossNet
0.8067
-
XCrossNet: Feature Structure-Oriented Learning for Click-Through Rate Prediction
-
TF4CTR
0.8150
-
TF4CTR: Twin Focus Framework for CTR Prediction via Adaptive Sample Differentiation
-
NormDNN
0.8107
-
Correct Normalization Matters: Understanding the Effect of Normalization On Deep Neural Network Models For Click-Through Rate Prediction
-
0 of 38 row(s) selected.
Previous
Next
Click Through Rate Prediction On Criteo | SOTA | HyperAI