HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Breast Tumour Classification
Breast Tumour Classification On Pcam
Breast Tumour Classification On Pcam
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
Virchow
0.933
Virchow: A Million-Slide Digital Pathology Foundation Model
Steerable G-CNN (e)
-
Learning Steerable Filters for Rotation Equivariant CNNs
-
VF-CNN (C8)
-
Rotation equivariant vector field networks
ResNet-34 (e)
-
Deep Residual Learning for Image Recognition
G-CNN (C4)
-
Group Equivariant Convolutional Networks
DenseNet-121 (e)
-
Densely Connected Convolutional Networks
G-CNN (C8)
-
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
VF-CNN (C12)
-
Rotation equivariant vector field networks
VF-CNN (C4)
-
Rotation equivariant vector field networks
Steerable G-CNN (C8)
-
Learning Steerable Filters for Rotation Equivariant CNNs
-
ResNet-50 (e)
-
Deep Residual Learning for Image Recognition
p4m-DenseNet (D4)
-
Rotation Equivariant CNNs for Digital Pathology
Steerable G-CNN (C8)
-
Learning Steerable Filters for Rotation Equivariant CNNs
-
Steerable G-CNN (C12)
-
Learning Steerable Filters for Rotation Equivariant CNNs
-
G-CNN (C12)
-
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
DSF-CNN (C8)
-
Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in Histology Images
0 of 16 row(s) selected.
Previous
Next