Automated Theorem Proving On Holstep
Métriques
Classification Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | Classification Accuracy | Paper Title | Repository |
---|---|---|---|
Siamese 1D CNN | 0.82 | HolStep: A Machine Learning Dataset for Higher-order Logic Theorem Proving | |
FormulaNet-basic | 0.891 | Premise Selection for Theorem Proving by Deep Graph Embedding | |
MPNN-DagLSTM | 0.916 | Improving Graph Neural Network Representations of Logical Formulae with Subgraph Pooling | - |
FormulaNet | 0.903 | Premise Selection for Theorem Proving by Deep Graph Embedding | |
Siamese 1D CNN-LSTM | 0.83 | HolStep: A Machine Learning Dataset for Higher-order Logic Theorem Proving |
0 of 5 row(s) selected.