HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Atari Games
Atari Games On Atari 2600 Gravitar
Atari Games On Atari 2600 Gravitar
Métriques
Score
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Score
Paper Title
Repository
SARSA
429.0
-
-
CGP
2350
Evolving simple programs for playing Atari games
Nature DQN
306.7
Human level control through deep reinforcement learning
ES FF (1 hour) noop
805.0
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Agent57
19213.96
Agent57: Outperforming the Atari Human Benchmark
SND-STD
4643
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
MuZero
6682.70
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
SND-V
2741
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
SND-VIC
6712
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
A2C + SIL
1874.2
Self-Imitation Learning
A3C LSTM hs
320.0
Asynchronous Methods for Deep Reinforcement Learning
GDI-I3
5905
GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning
-
DQNMMCe
1078.3
Count-Based Exploration with the Successor Representation
DDQN+Pop-Art noop
483.5
Learning values across many orders of magnitude
-
Duel noop
588.0
Dueling Network Architectures for Deep Reinforcement Learning
MuZero (Res2 Adam)
8006.93
Online and Offline Reinforcement Learning by Planning with a Learned Model
DQN hs
298.0
Deep Reinforcement Learning with Double Q-learning
IMPALA (deep)
359.50
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
C51 noop
440.0
A Distributional Perspective on Reinforcement Learning
GDI-H3
5915
Generalized Data Distribution Iteration
-
0 of 53 row(s) selected.
Previous
Next