HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Détection d'anomalie
Anomaly Detection On Visa
Anomaly Detection On Visa
Métriques
Detection AUROC
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Detection AUROC
Paper Title
Repository
CFLOW
91.5
CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows
AnomalyDINO-S (full-shot)
97.6
AnomalyDINO: Boosting Patch-based Few-shot Anomaly Detection with DINOv2
WinCLIP+ (2-shot)
84.6
WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation
Reverse Distillation
-
Anomaly Detection via Reverse Distillation from One-Class Embedding
GLASS
98.8
A Unified Anomaly Synthesis Strategy with Gradient Ascent for Industrial Anomaly Detection and Localization
MuSc (zero-shot)
92.8
MuSc: Zero-Shot Industrial Anomaly Classification and Segmentation with Mutual Scoring of the Unlabeled Images
AnomalyCLIP
82.1
AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection
AnomalyDINO-S (4-shot)
92.6
AnomalyDINO: Boosting Patch-based Few-shot Anomaly Detection with DINOv2
APRIL-GAN
78.0
APRIL-GAN: A Zero-/Few-Shot Anomaly Classification and Segmentation Method for CVPR 2023 VAND Workshop Challenge Tracks 1&2: 1st Place on Zero-shot AD and 4th Place on Few-shot AD
AST
94.9
Asymmetric Student-Teacher Networks for Industrial Anomaly Detection
SPD
87.8
SPot-the-Difference Self-Supervised Pre-training for Anomaly Detection and Segmentation
STPM
83.3
Student-Teacher Feature Pyramid Matching for Anomaly Detection
SAA+
-
Segment Any Anomaly without Training via Hybrid Prompt Regularization
ReContrast
97.5
-
-
WinCLIP (0-shot)
78.1
WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation
EfficientAD-S
97.5
EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies
PaDiM
-
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization
AnoDDPM
78.2
AnoDDPM: Anomaly Detection With Denoising Diffusion Probabilistic Models Using Simplex Noise
SPADE
82.1
Sub-Image Anomaly Detection with Deep Pyramid Correspondences
DiffusionAD
98.8
DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly Detection
0 of 47 row(s) selected.
Previous
Next