HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Détection d'anomalie
Anomaly Detection On Unlabeled Cifar 10 Vs
Anomaly Detection On Unlabeled Cifar 10 Vs
Métriques
AUROC
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
AUROC
Paper Title
Repository
Input Complexity (PixelCNN++)
53.5
Input complexity and out-of-distribution detection with likelihood-based generative models
SSD
89.6
SSD: A Unified Framework for Self-Supervised Outlier Detection
MeanShifted
90.0
Mean-Shifted Contrastive Loss for Anomaly Detection
Likelihood (Glow)
58.2
Input complexity and out-of-distribution detection with likelihood-based generative models
PsudoLabels ResNet-18
90.8
Out-of-Distribution Detection Without Class Labels
-
CSI
89.3
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
PsudoLabels ViT
96.7
Out-of-Distribution Detection Without Class Labels
-
PsudoLabels ResNet-152
93.3
Out-of-Distribution Detection Without Class Labels
-
Likelihood (PixelCNN++)
52.6
Input complexity and out-of-distribution detection with likelihood-based generative models
SCAN Features
90.2
Out-of-Distribution Detection Without Class Labels
-
Input Complexity (Glow)
73.6
Input complexity and out-of-distribution detection with likelihood-based generative models
GOAD
89.2
Classification-Based Anomaly Detection for General Data
MTL
82.92
Shifting Transformation Learning for Out-of-Distribution Detection
-
0 of 13 row(s) selected.
Previous
Next