HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Anomaly Detection
Anomaly Detection On Shanghaitech
Anomaly Detection On Shanghaitech
Métriques
AUC
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
AUC
Paper Title
Repository
AnomalyRuler
85.2%
Follow the Rules: Reasoning for Video Anomaly Detection with Large Language Models
VideoPatchCore
85.1%
VideoPatchCore: An Effective Method to Memorize Normality for Video Anomaly Detection
TSGAD
80.6%
An Exploratory Study on Human-Centric Video Anomaly Detection through Variational Autoencoders and Trajectory Prediction
PGM
61.28%
Bounding Boxes and Probabilistic Graphical Models: Video Anomaly Detection Simplified
EVAL
76.63%
EVAL: Explainable Video Anomaly Localization
-
SSMTL+UBnormal
83.7%
UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection
MPED-RNN
73.40%
Learning Regularity in Skeleton Trajectories for Anomaly Detection in Videos
Jigsaw-VAD
84.3%
Video Anomaly Detection by Solving Decoupled Spatio-Temporal Jigsaw Puzzles
Multi-timescale Prediction
76.03%
Multi-timescale Trajectory Prediction for Abnormal Human Activity Detection
-
Any-Shot Sequential
71.6%
Any-Shot Sequential Anomaly Detection in Surveillance Videos
-
Background- Agnostic Framework+SSPCAB
83.6%
Self-Supervised Predictive Convolutional Attentive Block for Anomaly Detection
SSMTL++v2
83.8%
SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video Anomaly Detection
-
STAN
76.2%
STAN: Spatio-Temporal Adversarial Networks for Abnormal Event Detection
-
ASTNet
73.6
Attention-based residual autoencoder for video anomaly detection
two-stream
83.7%
Context Recovery and Knowledge Retrieval: A Novel Two-Stream Framework for Video Anomaly Detection
Sparse Coding Stacked RNN
68.0%
A Revisit of Sparse Coding Based Anomaly Detection in Stacked RNN Framework
STPT
77.1%
Spatio-temporal predictive tasks for abnormal event detection in videos
-
DMAD
78.8%
Diversity-Measurable Anomaly Detection
DAC(STG-NF + Jigsaw)
87.72%
Divide and Conquer in Video Anomaly Detection: A Comprehensive Review and New Approach
MULDE-object-centric-micro
86.7%
MULDE: Multiscale Log-Density Estimation via Denoising Score Matching for Video Anomaly Detection
0 of 31 row(s) selected.
Previous
Next