HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Détection d'anomalie
Anomaly Detection On One Class Imagenet 30
Anomaly Detection On One Class Imagenet 30
Métriques
AUROC
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
AUROC
Paper Title
Repository
RotNet + Translation
77.9
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
-
RotNet + Translation + Self-Attention
84.8
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
-
RotNet
65.3
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
-
CSI
91.6
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
-
RotNet + Translation + Self-Attention + Resize
85.7
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
-
FCDD
91
Explainable Deep One-Class Classification
-
CLIP (Zero Shot)
99.88
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
-
BCE-Clip (OE)
99.90
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
-
RotNet + Self-Attention
81.6
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
-
Supervised (OE)
56.1
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
-
Binary Cross Entropy (OE)
97.7
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
-
0 of 11 row(s) selected.
Previous
Next