HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Détection d'anomalie
Anomaly Detection On One Class Cifar 100
Anomaly Detection On One Class Cifar 100
Métriques
AUROC
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
AUROC
Paper Title
Repository
GeneralAD
98.4
GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features
Transformaly
97.7
Transformaly -- Two (Feature Spaces) Are Better Than One
DisAug CLR
86.5
Learning and Evaluating Representations for Deep One-class Classification
PANDA-OE
97.3
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Self-Supervised Multi-Head RotNet
80.1
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
GAN based Anomaly Detection in Imbalance Problems
87.4
GAN-based Anomaly Detection in Imbalance Problems
-
DUIAD
86
Deep Unsupervised Image Anomaly Detection: An Information Theoretic Framework
-
Geom
78.7
Deep Anomaly Detection Using Geometric Transformations
Self-Supervised One-class SVM, RBF kernel
62.6
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Self-Supervised DeepSVDD
67
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Mean-Shifted Contrastive Loss
96.5
Mean-Shifted Contrastive Loss for Anomaly Detection
Rotation Prediction
84.1
Learning and Evaluating Representations for Deep One-class Classification
MTL
83.95
Shifting Transformation Learning for Out-of-Distribution Detection
-
CSI
89.6
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
PANDA
94.1
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
0 of 15 row(s) selected.
Previous
Next