HyperAI

Anomaly Detection On One Class Cifar 10

Métriques

AUROC

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleAUROC
gan-based-anomaly-detection-in-imbalance90.6
explainable-deep-one-class-classification92
unsupervised-anomaly-detection-and91.25
generalad-anomaly-detection-across-domains-by99.3
classification-based-anomaly-detection-for-188.2
anomaly-detection-requires-better98.4
using-self-supervised-learning-can-improve90.1
csi-novelty-detection-via-contrastive94.3
inverse-transform-autoencoder-for-anomaly86.6
panda-adapting-pretrained-features-for96.2
deep-nearest-neighbor-anomaly-detection92.5
unsupervised-anomaly-detection-and74.33
learning-and-evaluating-representations-for-192.5
ssd-a-unified-framework-for-self-supervised-190.0
panda-adapting-pretrained-features-for64.7
oled-one-class-learned-encoder-decoder67.1
transformaly-two-feature-spaces-are-better98.3
mean-shifted-contrastive-loss-for-anomaly98.6
unsupervised-two-stage-anomaly-detection88.4
exposing-outlier-exposure-what-can-be-learned99.6
ocgan-one-class-novelty-detection-using-gans66.83
fake-it-till-you-make-it-near-distribution99.1
deep-unsupervised-image-anomaly-detection-an92.6
panda-adapting-pretrained-features-for64.8
p-kdgan-progressive-knowledge-distillation73.05
when-text-and-images-don-t-mix-bias99.1
panda-adapting-pretrained-features-for98.9
deep-anomaly-detection-using-geometric86
fastflow-unsupervised-anomaly-detection-and66.7
deep-one-class-classification65.7
esad-end-to-end-deep-semi-supervised-anomaly83.3
anomaly-detection-via-reverse-distillation86.5
exposing-outlier-exposure-what-can-be-learned98.5
unsupervised-anomaly-detection-and83.68
simple-adaptive-projection-with-pretrained97.0
dasvdd-deep-autoencoding-support-vector-data66.5