HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Détection d'anomalie
Anomaly Detection On Mpdd
Anomaly Detection On Mpdd
Métriques
Detection AUROC
Segmentation AUROC
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Detection AUROC
Segmentation AUROC
Paper Title
Repository
GLAD
97.5
98.7
GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection
LeMO
87.4
97.8
Towards Total Online Unsupervised Anomaly Detection and Localization in Industrial Vision
-
AdaCLIP
82.5
96.1
AdaCLIP: Adapting CLIP with Hybrid Learnable Prompts for Zero-Shot Anomaly Detection
ADSPR
-
96.8
Anomaly Detection using Score-based Perturbation Resilience
PatchCore
82.12
95.66
Towards Total Recall in Industrial Anomaly Detection
ULSAD
95.73
97.45
Revisiting Deep Feature Reconstruction for Logical and Structural Industrial Anomaly Detection
DMDD
98.10
98.96
Dual-Modeling Decouple Distillation for Unsupervised Anomaly Detection
-
FastRecon
82.5
97.9
FastRecon: Few-shot Industrial Anomaly Detection via Fast Feature Reconstruction
-
DiffusionAD
96.2
98.5
DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly Detection
POUTA
97.5
-
Produce Once, Utilize Twice for Anomaly Detection
-
GLASS
99.6
99.4
A Unified Anomaly Synthesis Strategy with Gradient Ascent for Industrial Anomaly Detection and Localization
Dinomaly
97.2
99.1
Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection
KAnoCLIP
77.8
98.3
KAnoCLIP: Zero-Shot Anomaly Detection through Knowledge-Driven Prompt Learning and Enhanced Cross-Modal Integration
-
RealNet
96.3
98.2
RealNet: A Feature Selection Network with Realistic Synthetic Anomaly for Anomaly Detection
PBAS
97.7
98.8
Progressive Boundary Guided Anomaly Synthesis for Industrial Anomaly Detection
0 of 15 row(s) selected.
Previous
Next