HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Détection d'anomalie
Anomaly Detection On Leave One Class Out
Anomaly Detection On Leave One Class Out
Métriques
AUROC
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
AUROC
Paper Title
Repository
CLIP (zero shot)
92.2
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
DSVDD
52.2
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
DSAD
84.2
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
BCE-CLIP
98.4
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
HSC
84.8
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
Binary Cross Entropy (OE)
86.6
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
0 of 6 row(s) selected.
Previous
Next