HyperAI

Anomaly Detection On Btad

Métriques

Detection AUROC
Segmentation AUPRO

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
Detection AUROC
Segmentation AUPRO
Paper TitleRepository
ReConPatch WRN-5095.897.5ReConPatch : Contrastive Patch Representation Learning for Industrial Anomaly Detection
PatchSVDD--Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation
CPR94.885.1Target before Shooting: Accurate Anomaly Detection and Localization under One Millisecond via Cascade Patch Retrieval
MuSc (zero-shot)96.1683.43MuSc: Zero-Shot Industrial Anomaly Classification and Segmentation with Mutual Scoring of the Unlabeled Images
RealNet96.1-RealNet: A Feature Selection Network with Realistic Synthetic Anomaly for Anomaly Detection
FastFlow+AltUB--AltUB: Alternating Training Method to Update Base Distribution of Normalizing Flow for Anomaly Detection-
PNI--PNI : Industrial Anomaly Detection using Position and Neighborhood Information
URD93.978.5Unlocking the Potential of Reverse Distillation for Anomaly Detection
AD-CLSCNFs95.9372.77Anomaly Detection Using Normalizing Flow-Based Density Estimation and Synthetic Defect Classification
WeakREST-Un94.484.9Industrial Anomaly Detection and Localization Using Weakly-Supervised Residual Transformers-
VT-ADL--VT-ADL: A Vision Transformer Network for Image Anomaly Detection and Localization
D3AD95.283.2Dynamic Addition of Noise in a Diffusion Model for Anomaly Detection
Reverse Distillation ++95.63-Revisiting Reverse Distillation for Anomaly Detection
PyramidFlow (Res18)95.8-PyramidFlow: High-Resolution Defect Contrastive Localization using Pyramid Normalizing Flow
0 of 14 row(s) selected.