Action Segmentation On Gtea 1
Métriques
Acc
Edit
F1@10%
F1@25%
F1@50%
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | Acc | Edit | F1@10% | F1@25% | F1@50% |
---|---|---|---|---|---|
sf-tmn-slowfast-temporal-modeling-network-for | 83.0 | 88.9 | 91.9 | 90.7 | 83.1 |
is-weakly-supervised-action-segmentation | 69.2 | 84.0 | 88.2 | 85.5 | 67.3 |
ms-tcn-multi-stage-temporal-convolutional | 79.2 | 81.4 | 87.5 | 85.4 | 74.6 |
alleviating-over-segmentation-errors-by | 77.3 | 83.7 | 89.4 | 87.8 | 79.8 |
refining-action-segmentation-with | 76.9 | 84.5 | 89.2 | 87.2 | 74.8 |
temporal-deformable-residual-networks-for | 70.1 | 74.1 | 79.2 | 74.4 | 62.7 |
maximization-and-restoration-action | 82.0 | 90.9 | 92.9 | 92.0 | 82.9 |
bridge-prompt-towards-ordinal-action | 81.2 | 91.6 | 94.1 | 92.0 | 83.0 |
efficient-temporal-action-segmentation-via | 83.0 | 88.7 | 92.0 | 91.3 | 83.5 |
diffusion-action-segmentation | 82.2 | 89.6 | 92.5 | 91.5 | 84.7 |
asformer-transformer-for-action-segmentation | 79.7 | 84.6 | 90.1 | 88.8 | 79.2 |
boundary-aware-cascade-networks-for-temporal | 79.8 | 84.4 | 88.5 | 87.1 | 77.3 |
depthwise-separable-temporal-convolutional | 78.10 | 84.05 | 88.30 | 85.44 | 72.84 |
fact-frame-action-cross-attention-temporal | 84.5 | 93.5 | 96.1 | 95.6 | 87.5 |
ms-tcn-multi-stage-temporal-convolutional-2 | 80.1 | 83.5 | 88.8 | 85.7 | 76.0 |
unified-fully-and-timestamp-supervised | 80.2 | 92.1 | 92.7 | 91.3 | 81 |
temporal-convolutional-networks-for-action | 64.0 | - | 72.2 | 69.3 | 56.0 |
cross-enhancement-transformer-for-action | 80.3 | 87.9 | 91.8 | 91.2 | 81.3 |
bit-bi-level-temporal-modeling-for-efficient | 82.0 | 92.6 | 94.8 | 92.8 | 82.6 |
refining-action-segmentation-with | 78.7 | 87.5 | 90.9 | 88.6 | 76.4 |
coarse-to-fine-multi-resolution-temporal | 80.8 | 86.4 | 90.3 | 88.8 | 77.7 |
action-segmentation-with-joint-self | 79.8 | 86.2 | 90.0 | 89.1 | 78.0 |
efficient-u-transformer-with-boundary-aware | 77 | 83.9 | 88.2 | 87.2 | 74 |
ms-tcn-multi-stage-temporal-convolutional-2 | 79.7 | 83.0 | 88.2 | 86.2 | 75.9 |
efficient-two-step-networks-for-temporal | 78.2 | 86.2 | 91.1 | 90.0 | 77.9 |
action-segmentation-with-mixed-temporal | 80.0 | 85.8 | 90.5 | 88.4 | 76.2 |
semantic2graph-graph-based-multi-modal | 89.8 | 92.0 | 95.7 | 94.2 | 91.3 |
segmental-spatiotemporal-cnns-for-fine | 60.6 | - | 58.7 | 54.4 | 41.9 |