HyperAI

Action Detection On Ucf101 24

Métriques

Video-mAP 0.2
Video-mAP 0.5

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleVideo-mAP 0.2Video-mAP 0.5
hierarchical-self-attention-network-for82.3051.47
multi-region-two-stream-r-cnn-for-action--
multi-region-two-stream-r-cnn-for-action--
step-spatio-temporal-progressive-learning-for76.6-
tacnet-transition-aware-context-network-for-177.552.9
ava-a-video-dataset-of-spatio-temporally-59.9
holistic-interaction-transformer-network-for88.874.3
hierarchical-self-attention-network-for80.4249.50
you-only-watch-once-a-unified-cnn75.848.8
actions-as-moving-points81.853.9
tube-convolutional-neural-network-t-cnn-for47.1-
you-only-watch-once-a-unified-cnn78.653.1
dance-with-flow-two-in-one-stream-action75.4848.31
dance-with-flow-two-in-one-stream-action78.4850.30
finding-action-tubes-with-a-sparse-to-dense-54
end-to-end-semi-supervised-learning-for-video-72.1
stable-mean-teacher-for-semi-supervised-video-76.3
end-to-end-spatio-temporal-action88.071.8