Abnormal Event Detection In Video On Ucsd
Métriques
AUC
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | AUC | Paper Title | Repository |
---|---|---|---|
Background-Agnostic Framework | 98.7% | A Background-Agnostic Framework with Adversarial Training for Abnormal Event Detection in Video | |
SSMTL | 97.5% | Anomaly Detection in Video via Self-Supervised and Multi-Task Learning | |
AI-VAD | 99.1 | An Attribute-based Method for Video Anomaly Detection | |
Adversarial Generator | 97.4% | Abnormal Event Detection in Videos using Generative Adversarial Nets | - |
0 of 4 row(s) selected.