3D Object Recognition On Modelnet40
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | Accuracy | Paper Title | Repository |
---|---|---|---|
R2-MLP-36 | 97.7% | R2-MLP: Round-Roll MLP for Multi-View 3D Object Recognition | |
MVCNN-MultiRes | 93.8% | Volumetric and Multi-View CNNs for Object Classification on 3D Data | |
FPNN (4-FCs + NF) | 88.4% | FPNN: Field Probing Neural Networks for 3D Data | |
Variational Shape Learner | 84.5% | Learning a Hierarchical Latent-Variable Model of 3D Shapes | |
MeshWalker (ours) | 92.3% | MeshWalker: Deep Mesh Understanding by Random Walks | |
MVT-small | 97.5% | MVT: Multi-view Vision Transformer for 3D Object Recognition |
0 of 6 row(s) selected.