HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
3D Face Reconstruction
3D Face Reconstruction On Florence
3D Face Reconstruction On Florence
Métriques
Mean NME
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Mean NME
Paper Title
Repository
VRN-Guided
5.2667%
Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression
Piotraschke and Blanz
-
Automated 3D Face Reconstruction From Multiple Images Using Quality Measures
-
DenseLandmarks (Single-view)
-
3D face reconstruction with dense landmarks
-
3DDFA_V2
-
Towards Fast, Accurate and Stable 3D Dense Face Alignment
Deep3DFaceReconstruction
-
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set
Tran et al.
-
Regressing Robust and Discriminative 3D Morphable Models with a very Deep Neural Network
DenseLandmarks (Multi-view)
-
3D face reconstruction with dense landmarks
-
GANFit
-
GANFIT: Generative Adversarial Network Fitting for High Fidelity 3D Face Reconstruction
itwmm
-
3D Face Morphable Models "In-the-Wild"
-
ASM
-
ASM: Adaptive Skinning Model for High-Quality 3D Face Modeling
-
3DDFA
6.3833%
Face Alignment Across Large Poses: A 3D Solution
-
3DMM-CNN
-
Regressing Robust and Discriminative 3D Morphable Models with a very Deep Neural Network
PRN
3.7551%
Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network
Deng
-
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set
Unsupervised-3DMMR
-
Unsupervised Training for 3D Morphable Model Regression
Genova et al.
-
Unsupervised Training for 3D Morphable Model Regression
0 of 16 row(s) selected.
Previous
Next