HyperAI

Design of diverse, functional mitochondrial targeting sequences across eukaryotic organisms using variational autoencoder

Aashutosh Girish Boob, Shih-I Tan, Airah Zaidi, Nilmani Singh, Xueyi Xue, Shuaizhen Zhou, Teresa A. Martin, Li-Qing Chen , Huimin Zhao
Date de publication: 6/9/2025
Design of diverse, functional mitochondrial targeting sequences across eukaryotic organisms using variational autoencoder
Résumé

Mitochondria play a key role in energy production and metabolism, making them a promising target for metabolic engineering and disease treatment. However, despite the known influence of passenger proteins on localization efficiency, only a few protein-localization tags have been characterized for mitochondrial targeting. To address this limitation, we leverage a Variational Autoencoder to design novel mitochondrial targeting sequences. In silico analysis reveals that a high fraction of the generated peptides (90.14%) are functional and possess features important for mitochondrial targeting. We characterize artificial peptides in four eukaryotic organisms and, as a proof-of-concept, demonstrate their utility in increasing 3-hydroxypropionic acid titers through pathway compartmentalization and improving 5-aminolevulinate synthase delivery by 1.62-fold and 4.76-fold, respectively. Moreover, we employ latent space interpolation to shed light on the evolutionary origins of dual-targeting sequences. Overall, our work demonstrates the potential of generative artificial intelligence for both fundamental research and practical applications in mitochondrial biology.