HyperAIHyperAI

Command Palette

Search for a command to run...

il y a 6 heures

Voici la traduction en chinois, respectant le style académique des revues SCI/SSCI : MIST:基于有监督训练的互信息

German Gritsai Megan Richards Maxime Méloux Kyunghyun Cho Maxime Peyrard

Voici la traduction en chinois, respectant le style académique des revues SCI/SSCI :
MIST:基于有监督训练的互信息

Résumé

Voici la traduction du texte en français, respectant le style formel et la terminologie du domaine de l'apprentissage automatique et des statistiques :Nous proposons une approche entièrement fondée sur les données (data-driven) pour la conception d'estimateurs de l'information mutuelle (IM). Puisque tout estimateur d'IM est une fonction de l'échantillon observé provenant de deux variables aléatoires, nous paramétrons cette fonction à l'aide d'un réseau de neurones (MIST) et l'entraînons de bout en bout pour prédire les valeurs d'IM. L'entraînement est effectué sur un vaste méta-jeu de données composé de 625 000 distributions conjointes synthétiques dont l'IM réelle (ground-truth) est connue. Pour gérer des tailles d'échantillons et des dimensions variables, nous utilisons un mécanisme d'attention bidimensionnel garantissant l'invariance par permutation entre les échantillons d'entrée. Afin de quantifier l'incertitude, nous optimisons une fonction de perte de régression quantile, permettant à l'estimateur d'approximer la distribution d'échantillonnage de l'IM plutôt que de renvoyer une simple estimation ponctuelle. Ce programme de recherche se distingue des travaux antérieurs en adoptant une voie entièrement empirique, troquant les garanties théoriques universelles contre la flexibilité et l'efficacité. Empiriquement, les estimateurs appris surpassent largement les méthodes de référence classiques, quelles que soient les tailles et dimensions des échantillons, y compris sur des distributions conjointes non rencontrées lors de l'entraînement. Les intervalles basés sur les quantiles qui en résultent sont bien calibrés et plus fiables que les intervalles de confiance basés sur le bootstrap, tandis que l'inférence est plus rapide de plusieurs ordres de grandeur par rapport aux méthodes neuronales existantes. Au-delà des gains empiriques immédiats, ce cadre produit des estimateurs entraînables et entièrement différentiables pouvant être intégrés dans des pipelines d'apprentissage plus larges. De plus, en exploitant l'invariance de l'IM aux transformations inversibles, les méta-jeux de données peuvent être adaptés à des modalités de données arbitraires via des flux de normalisation (normalizing flows), permettant un entraînement flexible pour diverses méta-distributions cibles.

Summarization

Researchers from Université Grenoble Alpes, New York University, and Genentech introduce MIST, a fully data-driven mutual information estimator trained on synthetic meta-datasets that utilizes quantile regression to provide calibrated uncertainty intervals, offering a differentiable and highly efficient alternative to classical baselines that relies on empirical generalization rather than theoretical guarantees.

Introduction

Mutual Information (MI) is a critical metric in data science for quantifying nonlinear dependencies between variables, serving as a cornerstone for tasks such as feature selection, representation learning, and causality. Because the true probability distributions of real-world data are rarely known, practitioners rely on estimators to infer MI from finite samples. However, existing techniques—whether they estimate data densities directly or approximate density ratios—often struggle in challenging, realistic settings. These methods tend to fail when dealing with high-dimensional data, limited sample sizes, or complex distributions, and they are frequently validated only on simple, low-MI Gaussian benchmarks that mask these performance gaps.

To overcome these limitations, the authors introduce MIST (Mutual Information estimation via Supervised Training), a framework that reframes MI estimation as a supervised learning problem rather than a mathematical derivation. Instead of approximating density functions during inference, the authors train a neural network end-to-end using a massive meta-dataset of synthetic distributions with known ground-truth MI values. This allows the model to learn the mapping from data samples to information content directly.

Key innovations and advantages of this approach include:

  • Robustness in Low-Data Regimes: The estimator significantly outperforms existing baselines in difficult settings, providing reliable estimates with as few as 10 to 500 samples and across higher dimensions.
  • Computational Efficiency: By amortizing the computational cost during training, the model performs inference orders of magnitude faster than prior neural methods, requiring only a single forward pass.
  • Calibrated Uncertainty: The architecture incorporates quantile regression to provide built-in, well-calibrated confidence intervals, offering reliability that standard point-estimate methods lack.

Dataset

The authors construct a synthetic meta-dataset using the BMI library to enable supervised learning over distributions with known Mutual Information (MI). The dataset is organized as follows:

  • Dataset Composition and Sources The meta-dataset consists of synthetic distributions generated via invertible transformations applied to base families with analytical MI. Each entry, or "meta-sample," pairs joint samples from a specific distribution with its ground-truth MI value.

  • Distribution Categories The data is categorized into two main groups based on their relationship to the training data:

    • In-Meta-Distribution (IMD): This subset includes base distributions such as Multivariate Normal (with dense or latent variable model variants) and Multivariate Student’s t-distributions (with dense or sparse structures). These families share covariance structures but differ in tail heaviness and parameterization.
    • Out-of-Meta-Distribution (OoMD): This subset contains distribution families entirely absent from the training set to test generalization. It features a multivariate additive noise model characterized by non-Gaussian properties and bounded support, where noise is controlled by a shared scale parameter.
  • Data Partitioning and Usage To promote diversity, the authors partition distribution families into disjoint training and testing groups. For evaluation, they construct two distinct corpora:

    • Standard Benchmark: A smaller test set designed for comparison with existing, computationally intensive estimators.
    • Extended Benchmark: A larger test set used to assess generalization to novel distributions and higher dimensions.
  • Processing and Metadata

    • Dimensionality: The sample dimensionality across the dataset varies from 2 to 32.
    • Ground Truth: True MI values are computed either analytically or numerically depending on the tractability of the specific distribution family.
    • Parameter Sampling: Hyperparameters for structure (such as correlation, latent signal strength, and degrees of freedom) are sampled from specific uniform distributions to ensure variety within each family.

Method

The authors propose a fully data-driven framework for mutual information estimation, reimagining the problem as a supervised learning task where a model learns to predict mutual information directly from finite samples. This approach, termed MIST (Mutual Information estimation from Supervised Training), bypasses traditional density estimation or ratio approximation methods by training a neural network to map a set of paired samples {(xi,yi)}i=1n\{(x_i, y_i)\}_{i=1}^n{(xi,yi)}i=1n to an estimate of I(X;Y)I(X;Y)I(X;Y). The model is trained end-to-end on a large meta-dataset of synthetic joint distributions, where each training example consists of a dataset of samples and its corresponding ground-truth mutual information value. The learning objective is to minimize the mean squared error between the predicted MI and the true MI, effectively training the model to approximate the Bayes-optimal regression function that outputs the posterior expectation of MI given the observed data.

As shown in the figure below, the framework consists of two main components: a synthetic meta-dataset and a supervised prediction model. The meta-dataset is constructed by sampling from a diverse family of joint distributions, each with a known mutual information value, and generating finite datasets of varying sizes and dimensions. The prediction model, MIST, is designed to process these variable-sized datasets while being invariant to the order of samples. The model architecture is based on the SetTransformer++ framework, which is well-suited for processing unordered sets of data. The core of the architecture is a series of ISAB (Intra-Set Attention Block) layers that perform attention over a fixed number of learned inducing points, enabling efficient processing of variable-length inputs. To handle variable input dimensions, an additional row-wide attention block is introduced, which operates along the feature axis and uses a learned pooling mechanism to reduce the dimensionality to a fixed size. This row pooling step ensures that the model can process inputs of different dimensionalities. The processed features are then passed through a final MLP (Multi-Layer Perceptron) to produce the MI prediction. The model can be trained to predict a point estimate of MI using a mean squared error loss, or to predict quantiles of the MI distribution using a pinball loss, enabling built-in uncertainty quantification. The framework is designed to be robust to the wide range of MI values encountered in practice, with the authors finding that direct prediction of MI yields the best performance, provided the meta-dataset includes a sufficient range of MI labels.

Experiment

  • Benchmarking against existing methods on synthetic distributions validated that the learned estimators outperform baselines, achieving approximately 10x lower error on seen distributions and 5x lower error on unseen distributions.
  • In high-dimensional and low-sample regimes, the models demonstrated up to 100x lower loss than the KSG baseline and avoided the negative bias typically associated with estimating large Mutual Information values.
  • Scaling and efficiency experiments showed the method requires roughly half the samples of the best baseline for reliable estimates and performs inference 4 to 80 times faster than KSG.
  • Uncertainty quantification analysis confirmed that quantile-based intervals are well-calibrated, yielding approximately 2x better coverage than KSG across tested settings.
  • Generalization studies indicated robust performance on unseen distributions and sample sizes, though accuracy decreases when simultaneously encountering unseen distributions and higher dimensionalities.
  • Variable dimension experiments revealed that training on a diverse mix of dimensions reduces Mean Squared Error by 2 to 3 times for high-dimensional data (D16D \ge 16D16) compared to specialized single-dimension models.

The authors use the table to compare the performance of their learned estimators, MIST and MIST_QR, against several existing methods across different sample sizes and distribution types. Results show that MIST and MIST_QR achieve significantly lower mean squared error than all baselines, particularly in low-sample and high-dimensional settings, with MIST_QR demonstrating superior calibration and reliability in uncertainty estimation.

Construire l'IA avec l'IA

De l'idée au lancement — accélérez votre développement IA avec du co-codage IA gratuit, un environnement prêt à l'emploi et les meilleurs prix GPU.

Co-codage IA
GPU prêts à utiliser
Meilleurs prix
Commencer

Hyper Newsletters

Abonnez-vous à nos dernières mises à jour
Nous vous enverrons les dernières mises à jour de la semaine dans votre boîte de réception à neuf heures chaque lundi matin
Propulsé par MailChimp
Voici la traduction en chinois, respectant le style académique des revues SCI/SSCI : MIST:基于有监督训练的互信息 | Articles de recherche | HyperAI