全球首款异构融合类脑芯片,登上了 Nature 封面

今日,由清华大学主导的研究组,开发出了全球首款异构融合类脑计算芯片——「天机」,登上了最新一期 Nature 封面。这款 AI 芯片,可将计算机科学主导和神经科学主导这两种方法实现融合,开发出具有两者优点的通用平台,向着通用人工智能的研发更进了一步。

又是类脑计算,又是 AGI ,不过这一次,是登在了 Nature  杂志封面的国产芯片。

今天,清华大学类脑计算研究中心主导的一项研究,带来了类脑芯片研究的重大突破,将人们对 AGI 的研究又推进了一大步。

来自多家研究机构的合作者,共同打造出了首款异构融合类脑计算芯片将传统的机器学习和类脑计算的方式关联了起来。

这也是一个里程碑式的时刻,在 Nature 上的芯片制造和 AI 领域,首次刊登了来自中国的论文。

它为什么能被放在 Nature  的封面

这篇题目为 《面向通用人工智能的异构天机芯片架构》的论文,介绍了芯片「天机」的制作流程和工作机理。

论文标题:Towards artificial general intelligence with hybrid Tianjic chip architecture

地址:https://www.nature.com/articles/s41586-019-1424-8

而天机的关键点,体现在了融合

在 AGI 的研究中,分为两个流派,一个是计算机科学导向,另一个是神经科学导向。

由此也开发出了不同的两条思路,一边是人工神经网路(ANN),一边是类脑的相关研究,如脉冲神经网络(SNN)。

两种模式各自发展,使用的语言、计算原理、编码方式和场景都不同。但 AGI 的发展,需要借鉴两种模式的优点。

长久以来,两个模式的硬件,依赖的平台也各不相同,难以互相兼容。

为了解决这个问题,研究团队开发了将两种方案异构融合的架构,并打造了这款跨范式的计算芯片,完美地解决了这个问题。

天机芯片异构融合计算架构

天机芯片采用众核架构、可重构功能核模块,支持混合编码方案的类数据流控制模式。

它不仅能适应基于计算机科学的机器学习算法,还可以实现受大脑原理启发的神经计算模型和多种编码方案。

这项研究的亮点在哪里

芯片的主要创新体现在功能核(FCore)上,FCore 包括轴突、突触、树突、胞体和神经路由器构建单元。

通过可重构的 Fcore 模式,实现了灵活的建模配置和拓扑连接,编码方式可以在 ANN 和 SNN 模式之间转换,从而实现异构神经网络。

天机芯片设计图

FCore 还涵盖了多数 ANN 和 SNN 使用的线性积分和非线性变换操作。能完美的支持二者的运行。

一块天机芯片由 156 个 FCore 组成,包含大约 40000 个神经元和 1000 万个突触,采用 28 纳米半导体工艺制造,面积为 3.8×3.8 平方毫米。

天机芯片和 FCore

天机芯片在性能上也有了很大的提升。它能提供超过每秒 610 千兆字节(GB)的内部存储器带宽,运行 ANN 能达到 1.28  TOPS 的峰值性能。

与 GPU 的性能相比,芯片的吞吐量提高了 1.6-100  倍,电源效率则提高了 12-10000  倍。

还要啥自行车?

为了证明芯片和系统的适用性,他们打造了一个自动行驶自行车,在一块天机芯片上完成部署,并进行了运行试验。

自行车自主运动演示

这个无人自行车平台,具备语音识别、目标探测追踪的功能,可以运动控制、避障、进行自主决策。实际上是一个五脏俱全的小型类脑计算平台。

实验中,自行车顺利的完成了自主行驶,验证了他们的方案和芯片的可行性。

能够轻松实现避障和追踪任务

研究人员邓磊介绍,无人自行车系统的语音识别、自主决策、视觉追踪功能运用了模拟大脑的模型;

而目标探测、运动控制和躲避障碍功能,则运用了机器学习算法模型。

看似不可思议的自行车演示,也让跟到更多人看到了 AGI 到来的一种可能。据称,他们下一步打算走向商用。

超能芯片助力,AGI 会不会来?

最近,类脑研究和 AGI 的讯息频频进入大众的视野。

先是马斯克宣布的脑机接口的新进展,为脑科学的研究赚了一波热度。而后,是微软对 OpenAI 的投资 10 亿进行 AGI 的研究,引起了业内的震动。最近,Facebook 也公布了在类脑研究上的成果…

毫无疑问的是,这款实现了异构融合的突破式芯片,为 AGI 的研究添上了一把大火。

被无数人向往的 AGI ,会不会成为「有生之年」呢?

—— 完 ——

点击阅读原文